REPRESENTABILITY IN SOME SYSTEMS OF SECOND
ORDER ARITHMETIC

BY
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ABSTRACT

We answer two questions posed in a recent paper by H, B. Enderton by giving cha-
racterizations of the sets of integers weakly and strongly representable in a system of se.
cond order arithmetic with an infinity rule of inference. The results generalize to each of

a family of such systems.

The main aim of this paper is to give characterisations of the sets of integers
weakly and strongly representable in a system (4,) of second order arithmetic.
This answers questions posed in [1] where this system was introduced. (4,,) ig
obtained from full second order Peano arithmetic (4) (see [1], [3]) by adding the
following infinitary rule of inference:

of-rule: For any function «, from ¢(a(n)) for each n, infer IvVxP(¥(x)).

We shall give two characterisations of the weakly and strongly s7-representable
sets. The first is in terms of the class of monotone X}, inductive definitions,
while the second is in terms of recursion in the functional E* where, for partial
functions f
0 if Yadnf(a(n))=20

HOBY
' 1 if JaVnf(E(n)) > 0
Note that the functional E,; introduced by Tugué is just the restriction of
E? to total functions. We shall see that recursion in E, is very different to recursion
in E¥. We show that if the #/-rule is suitably weakened we can define a theory
(4,,-.) such that representability in this system may be characterised in terms of

recursion in E,,

* This paper was written wh'le the author held a Science Research Council fellowship.
Received September 1, 1969.
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In §1 we define the £ and /-inductive definitions and use them to characterise
the weakly «7-representable sets. In §2 we give schemes sufficient to define the
class of functionals partial recursive in any given consistent functional, and state
the basic properties of this notion. In §3 we give the characterisations of weak
and strong /-representability in terms of recursion in E}. §4 contains a result
implying that Ef is much more powerful than E,. The system (A4,,- ) with the
weakened «/-rule is introduced in §5 and we characterise weak and strong rep-
resentability in this system in terms of recursion in E,. Finally in §6 we give
definitions and state results that generalise the previous results to a large class of
systems of second order arithmetic.

We wish to thank Peter Hinman for informing us of his contribution to pro-
position C in §2 below which enabled us to complete our characterisation of the
strongly «&Z-representable sets.

Preliminaries. On the whole we follow the notation of [3] and [1]. For
convenience we shall allow set variables as well as function variables in the system
(A). Thus atomic formulae of the form g € X are allowed where ¢ is a term and X
is a set variable, and (VX)¢, (3X)¢ are formulae whenever ¢ is. We shall need to
add the appropriate axioms for these quantifiers and the comprehension schema
3XVa[¢ <> x € X] where X is not free in ¢. We assume that (4) is axiomatised so
that modus ponens is the only rule of inference. We recall that in any system T
containing numerals » for integers n, a set A< w is weakly T-represented by the
formula ¢(v) if A= {newll—Tgb(n)}. A is weakly (strongly) T-representable if
there is a formula ¢(v) such that A is weakly T-represented by ¢(v) (and also
w — A is weakly T-represented by T1¢(v)). If ¢ = o(v,,+-+,v,) is a term in the free
variables v,,---,v, we shall call ¢ a representing term for a function f if

Sk, ey ky) = m= l'(A)‘T(kn k) =m
Note that every recursive function f will have a representing term which we shall
write as f(v,,-,v,). If o is a representing term with no free variables then there is
an integer n such that b o=mn If o,m are two such terms then k0 =7 or
ke o (o= 7).

Sometimes it is convenient to extend the language by adding set constants
A for A < . Given a sentence ¢ in this extended language the truth value of ¢ is
obtained by interpreting ¢ in the standard model of second order aritametic in

the obvious way.
We shall make use of a fixed primitive recursive pairing function Ax, y(x,y)
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with primitive recursive projection functions = and & We shall write (x, y, z) for
(x,(y,2)). T¢1 will denote the gddel number of the formula ¢ in some standard
numbering of formulae. Sometimes we shall not distinguish between a set of
formulae and the set of gddel numbers of elements of the sets. Finally we recall
from [1] that as well as being closed under the «/-rule the </-theorems are closed
under the w-rule:
Vb gy p(n) = b, Vxp(x),
and that this implies closure under the dual «/-rule:
Yodn F(a(n)) = F,Vvaxd (F(x)).

§1. Monotone X} inductive definitions. By an inductive definition we shall
mezan a mapping I': P(w) - P(w) where P(w)= {AIA S w}. Given I' we may
define sets of integers I* by transfinite recursion on the ordinal A;
I'*= U {I(™)|u < 4}. Let || be the least ordinal A such that [**' = I'%, Then
|| exists and is countable. I® = [l is the set inductively defined by I'. We shaly
only be concerned with monotone I' i.e. if A < B then I'(4) = ['(B). For such
I, I(C®) =I'® and I'” may be characterised by the following two properties:
€8] rre)sre
@ [(4csA=>Ir°c4
Hence I" ® may be defined by
A3) I'*=N{4dcw|[(4)c 4}

An inductive definition T is £} if there is a =} predicate R(a, n) such that

nel({new l a(n) = 0}) <> R(a, 1)

LemMA 1.1. The set of </-theorems is definable by a monotone X} inductive
definition.

ProoF. Let Ax be the set of axioms of (4,) and let E be the set of formulae

of the form AwWne(¥(n)). Then Ax. and E are recursive sets Let I and Sbh. be
recursive functions such that

I,y ="¢ > yn
for formulae ¢, ¥ and
Sb.(TINVnP(F(n), x) = T(x)?

for formulae ¢(v) and integers x.
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The set of /-theorems is definable by the monotone X} inductive definition I’
where

[(A) = Ax. U{acw|In[ne A&I(n,a)e A]} U {acE | 3avn[Sb.(a,a(n)) € A1}

The -formulae (in the set variable X) are the class of formulae built up from
formulae of the form (¢=r), 71(c=mn), ¢ X using v, &,3Ix,Vx, & x, 4% where

o, are representing terms and Zx¢(x), %xP(x) are IVxP(H(x)), VvIx ¢ (%(x))
respectively. Note that X occurs only positively in an &/-formula. An </-formula

$(X,x) with only one free number variable x defines an inductive definition I if
[(4)={ne col $(4,n) is true},

and such T will be called o/-inductive definitions. Note that an «Z/-inductive
definition is automatically monotone,

Lemma 1.2. Every monotone £} inductive definition is an /-inductive
definition.
ProoF. Let R be I} such that
xeT({n ] a(n) = 0}) <> R(x,x)
If T monotone then
xeI'(4)<Jav¥n[(a(n) = 0> ne A) &R(x, x)]
There is a recursive S such that R may be put in the form

R(a, x) <> 3pVnS(@(m), B(m),x)

So
xe(4)<3a3pVn[(n > 0&a(n — 1) =0 - n — 1€ 4) & S(&(n),f(n), x)]
Let fo(s) = <)o), > 7l(Smgy+ 1>
[i(8) = 8((5)o)s+»0((Dmm+1)>  if >0
and fo(0) = f1(0)=0.
Let 8o(s) = T(Dingsy+1)
and g.(s) = h(s)+ 1.

If (vo, vy, v,) is an &/-formula defining S then the following /-formula defines I"

IWn[((#(n) =0) v1(go(7())=0) v g,(¥(n)) € X) & 6(fo(¥(n)).f1(¥(n)), 2)]
LemMa 1.3. Any set defined by an o-inductive definition is weakly of-
representable,
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ProOF. Let ¢(X,x) be an &/ formula defining the inductive definition T.
Let ®(X) be Vo[¢p(X,v) > ve X] and let ¢(x) be VX[®(X) - xe X] Then

nel® < ¢(n) is true.

We shall show that ¢(x) weakly &/-represents I'. Let T'= {newl Fad(m)}.

We must show that T® =T, Clearly T=T% as every «/-provable sentence is
true. To show I'* < T it is sufficient to show that I(T) = T. i.e. that ¢(T,x) is

true = F,®(X)—>xeX, By definition of ®(X) it is sufficient to show that
¢(T,x) is true = F,B(X) = ¢(X, x), which is a trivial consequence of the following
Jemma.

LemMA 1.4. For every s/-formula 6(X) with no free number variables
0(T) is true =L,®(X) - 0(X).

Proor. By induction on the structure of the &/-formula 6(X). If 8(X) has the
form (¢ = n) or 11(¢ =) then the lemma follows from the fact that o,7 are
closed representing terms. If 6(X) has the form (o € X) then, if 6(T)is true then
there is an ne T such that (¢ = n) is true, so that b, (¢ = n) &[®(X) > ne X]
which implies that F,®(X) - 0(X).

If 6(X) has the form 8,(X) v 6,(X) then if 8(T) is true then 8,(T) is true or
0,(T)is true. Hence by the induction hypothesis F,®(X) — 6,(X) or F,®(X)-0,(X)
giving F,®(X) - 8(X).

If 6(X) has the form 0,(X) & 8,(X) then the proof is similar to the above.

If (X) has one of the forms Ixd(X, x),Vxp(X, x), #xPp(X, x), L vxP(X, x) then
the proof has the same form in each case except that at the appropriate place use
s made of the dual w-rule, w-rule, &/-rule and dual «Z-rule respectively. We illustra-
te when 6(X) has the form &/x0,(X, x). If 0( T)is true then 3aVn[0,( T,a(n))is true].
By the induction hypothesis 3aVak,®(X) — 6,(X,a(n)). Using the o/-rule we get

FAWn[®(X) - 6,(X, %(n))] and hence L,(X) - 6(X).

We summarise the above results in Theorem 1 below. If ¢ is a class of inductive
definitions let Ind(%) be the family of those sets 1-1 reducible to sets defined by
an inductive definition in €. Let Xi,./ denote the family of monotone X! and
#Z-inductive definitions respectively.

THEOREM 1. The following are equivalent for A< w
(1) A is weakly of-representable.

(2) AelInd (Z))

(3) Aelnd ()
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Proor. (1) = (2) If 6(v) weakly sZ-represents A then ne A<>"0(n)1e '™ where

T is the monotone X} inductive definition given in Lemma 1.1. But AxT0(x)1
is a 1-1 recursive function.

(2) - (3) This follows from Lemma 1.2,
(3) = (1) Let ne A<>f(n)eI'™, where T is an .&/-inductive definition and f
is a 1-1 recursive function. Then by Lemma 1.3 there is a formula 6(v) such that

ne A<t 0(f(n)).
If 0'(v) is 8(f(v)) then 6'(v) weakly /-represents A.

§2. Recursion Theory in a consistent functional. By a functional we shall
mean a map of one of the forms AfxF(f; x) or AfF(f) where f ranges over partial
functions, We shall always assume that F is consistent, where AfxF(f; x) is con-
sistent if f < g= AxF(f; x) = AxF(g; x) and AfF(f) is consistent if f< g & F(f)
=y = F(g) =y and f < g means that f is a subfunction of g.

We wish to define when a partial function or functional is partial recursive in
MF(f). This will be done by defining an enumeration function Aefx{e}(F.f; x)
for the functionals partial recursive in F as in [5]. We could use minor modi-
fications of the schemes given there, so that they would apply to functionals
JfF(f) that may be defined on partial functions. Rather than do this we will use a
simplified set of schemes which will have the same effect. (Ax[a](x)la <o)
will denote a standard recursive enumeration of the primitive recursive functions.

Given AgF(g) and f, we define Aex{e} (F,f; x) to be the least function g satisfying
the following schemes:

9((0,e),x) = [e](x)

g((1,a,b),x) ~ q(q(a,x),q(b,x))
9((2,0),x) =~ F(iyq(x,y))
9((3,0),x) =~ f(x).

As F is consistent it is easy enough to see that the above schemes do determine
a least function. We make this precise by giving a monotone inductive definiton
T of V(F,f)={(e,x,y)|{e}(F.f; x) = y}.

Let
[(X)=A4, VA, UT(X) UT(X)

AO = {((09 a)5x5y) | [a] (x) = y}

4; = {((3,0),x, »)|f(x) =y}

where

and
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(X)) = {((1,a,0),,2)|3y19:0(a, 5, y1),(b, 9, ¥2):(¥1, ¥2,2) € X]}
Te(X) = {((2,0),7,2)|3g[F(g) = z &Vuv(g(u) = v (y,u,p) € X)]}

We now define V(F,f) to be I'”. To conclude the definition of the enumeration
function we must show that V(F,f) determines the graph of a partial function.
ie. if

Funct(X,Y)<>Vexyy'[(e,x,y)e X &(e,x,y )e Y-y = y']
we must prove the following lemma.

Lemma 2.1. Funct (V(F,f), V(F,[)).

Proor. This may be proved straightforwardly by proving Funct (I',T'%)
by transfinite induction on the ordinal J. But it is convenient to give a proof
that does not use ordinals, as we shall need to observe that the proof can be
formalised in a system of analysis. So let X, = {xea)l Funct({x},I'*)}. Clearly
Funct(X,,T'”). By Lemma 2.2 below Funct(T'(X,),I'®) as TT"®)=T". i.e. for
all xeI'(X,) Funct({x},I'®) which means I'(X,) < X,. But this implies that
I'* < X, which is just another way of stating Funct(I'°,T"®).

LemMma 2.2. For all Xy, X, € 0w, Funct(X,y,X,) = Funct(T'(X,),T(X))

Proor. If {(e,x)lEIy(e,x,y) ey} N {(e,x)| Iy(e,x,y)e Y, } = ithen Funct
(Y5, Y)). Hence for all distinct pairs Y, Y, from Ay, A, T(X,),Te(X,), we

have Funct(Y,, Y;). Trivially, Funct(4,,4,) and Funct (4, 4,). Hence to prove
the lemma it is sufficient to show that

Funct(X,, X ) = Funct(T",(X ), T (X)) & Funct(Tp(X o), Te(x,))
Now assume Funct(X,, X,)
(a) If ((1,a,b),y,z)eT(X;) for i = 0,1, then there are y/, yi such that
(@3, 9D, (b, 3, 75), (¥}, 93.2) € X; for i =0,1.
Hence by hypothesis y; = yi, y3 =y, so that z, = z,.
(b) If ((2,0), y,z) e Tp(X,) for i = 0, 1 then there are g; such that F(g;) = z; and
gu)y=v=(y,u,v)eX, for i =0,1,

Hence by hypothesis g, g, are compatible and so have a common extension g
say. But F is consistent so that z, = F(g,) = F(g) = F(g,) = z,.

Having proved Lemma 2.1., we may define {e}(F,f; x) to be the y such that
(e,x,y)e V(F,f) if there is such a y, and undefined otherwise.
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We shall write {e}(F,f), {e}(F;x) for {e}(F,f;0),{e}(F,¢$,x) respectively,
where ¢ denotes the completely undefined function. Sometimes we shall omit F
if there is no ambiguity.

A functional or function is partial recursive in F if it has one of the forms
Mx{e}(F, f; x),Af{e}(F, [),Ax{e} (F; x) for some ee w. The set A of integers is
recursive, semi-recursive in F if ¢,, 0, respectively are partial recursive in F where

c(x)=04x)=0if xec A

and e (x) =1, 0,(x) is not defined if x ¢ A.

A function or functional is partial recursive in Af Fy(f), -+, AfF,(f) if it is

partial recursive in F where
F(f) = F(tft+ D) if f(O)=i=n
and is undefined otherwise.

Rather than go through the tedious proof of the equivalence of the notions
introduced here with those in the literature we shall list some properties of our
notion that would be needed in any such proof. Anyone familiar with Kleene’s
papers should find no great difficulty in proving these.

PrROPOSITION A. Let g be a binary partial function such that there are primitive
recursive functions f,,f, such that

q(fo(a), x) = [a](x)
q9(f1(a,b), x) = q(q(a, x), q(b,x)).

Let @, = {Ax, -+ %,q(e,(x5, %) | n, e < o},
Then #, contains all the partial recursive functions, q € %,, A, is closzd under
explicit definitions, definitions by cases, primitive recursion and minimalisation.
Also the iteration and second recursion theorem hold, i.e. there is a primitive
recursive S such that

qa(S(e, x), y) =q(e,(x,y))

and for every feZ, there is an e such that
q(e,x) = (e, x).
ProposiTION B.

(1) Substitution. If f, gxF'(g;x) are partial recursive in F then so is
AxF'(f; x).

(2) Transitivity, If F” is partial recursive in F’ and F’ is partial recursive in
F then so is F”.



Vol. §, 1970 REPRESENTABILITY IN ARITHMETIC 317

(3) First recursion theorem. If AfxF’(f;x) is partial recursive in F then the
equation

F'(f; x)=f(x)

has a least solution f partial recursive in F.

An important property that may hold is given by the following: F has the
Selection Operator Property if there is a function v partial recursive in F such
that v(e) is defined <>3Ix{e}(F; x) =0 and Ix{e}(F; x) =0= {e} (F; v(e)) =0.

If # < P(w) such that A 2 Be F = Ac# then we may define a functional
F* by
0 if {x|f(x)=0}e#°

F;— ~
o) :1 if {x|f(x)>0}eF

where #° = {0 — A|A¢ F}.
Let Fy=F} (o,
Examples are E = F(,, and E, = F, where o/ ={A < colﬂoc\/no'c(n)eA}.
Clearly every Fg is total. i.e. dom Fz = 0,.
In general F need not have the selection operator property. e.g. if F is tota
with constant value O then F does not have the selection operator property.
On the other hand we have:

ProrosiTioN C. (Gandy, Hinman) If E is partial recursive in F and either F
is total or F = F} for some & then F has the selection operator property.

For total F the result was announced by Gandy in [2]. For F of the form
F} the result is proved by Hinman in [4].

Several important properties follow from the existence of a selection operator.

ProrosiTioN D. If F has the selection operator property then

(1) If A, B are semi-recursive in F then so are 4 U B, { ylEIx(x, y)e A}
(2) A is recursive in F<> A, — A are semi-recursive in F.

(3) f is partial recursive in F<> the graph of f is semi-recursive in F,

§3. Recursion in E} . In this section we show that the sets weakly (strongly)
s/-representable are exactly the sets semi-recursive (recursive) in E7.

Lemma 3.1, T(X) = 4, T (X) UT#(X)is an o-inductive definition,

PRrOOF. Clearly A, UT(X) is definable by an 2/-formula while
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xel'g? (X) <
Iyz[x=((2,0),5,2) &
[(z=0&VYodn(y,a(n),0)e X) or (z=1&3IaVnIm(m>0&(y,a(n),m)e X))]]
may also be written as an &/-formula.

LemMa 3.2. If T is a X' monotone inductive definition then I'® is semi-

recursive in E¥,

ProorF. By the proof of Lemma 1.2. we may write
x e T(X)<>32Yn[ (R, (@(n) v £1(&(n)) € X) & S4(&(n),x)]
where R,,S,, g, are recursive. Let F(f; x) =1 if
3a¥n[(R,(&n)) v£ (g1 (&(m))) = 1) & S4(&(n),x)]

and F(f;x) is undefined otherwise.
Then F(f;x) = EY(AyG(f; (y,x))) where

Lif (Ry(y) or f(g1(y)) = 1) &S (y,%)
0 if (MR,(») &f(g:(1)) #1) or 18(y,x)

G is a partial recursive functional so that F is partial recursive in EF.

G(f; (y,%) ~

Let g be the least solution of F(g;x)~ g(x). Then g is partial recursive in
E¥ by the first recursion theorem. Hence I'® is semi-recursive in Ef as xeI'®

«g(x)=1.
THEOREM 2.

(a) A is semi-recursive in E} <> A is weakly o/-representable.
(b) A is recursive in E¥ <A is strongly o/-representable.

ProoF. (a) If A is semi-recursive in E; then there is an e, such that
xe A< {eJ(Ef; x) =0<(es,x,0)0e'™ where I' is defined in Lemma 3.1.
Hence by Lemma 3.1. A € Ind(%) and by Theorem 1 A is weakly s«7-representable,
Conversely, if A is weakly «/-representable then by Theorem 1 A4 is 1-1 reducible
to a set defined by a X} inductive definition. Hence by Lemma 3.2 4 is semi-
recursive in EF.

(b) Let 6(v) be the formula weakly </-representing V(ET,$) as given by
applying Lemma 1.3 to the «/-inductive definition given by 3.1. By formalising
the special case of Lemma 2.1:

Funct(V(EY, $), V(EY, ¢))
we may show that
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n haVeyzz'[0((e, y,2)) &0((e, y,2")) >z = 2']
Now let A be recursive in Ef. Then there is an e, such that
Vx[{eo}(Ef; x) S 1 &(xe A= {e} (BT ; x) = 0)].
Hence
xe A<,0(ey, x,0)
x¢ A< ke, x,1)

But by (1) k,0(eq, x,1) = F,18(ey, x,0). Hence x ¢ A<= F,0(ey,x,0) so that if
0'(v) is O(ey,v,0) then 6'(v) strongly o/-represents A.

Conversely if A4 is strongly «7-representable then A and w— A are weakly 7-
representable so that by (a) above A and w— A are semi-recursive in
Ef.As E}f = F} and E is recursive in EJf we may apply proposition D to show
that A4 is recursive in E.

§4. The Extent of Ind(Z}). We have given characterisations of the class of
weakly </-representable sets as Ind(Z}) and as the class of sets semi-recursive in
E¥, but we have not yet indicated the extent of this class. The only interesting
upper bound on Ind(Z}) that we know of is that Ind(Z}) is a proper subset of the
class of A} sets. That Ind(Z}) < X} follows from Theorem 3 of [1] where it is
shown that the ©/-theorems form a T} set. For monotone X I we have

I'*=nN{A:T(4)c 4} = {neleoc[Vx(R(oc,x) = 0= a(x) = 0) = a(n)=0]}

is TIif R(x,x)<>xeT({n|x(n) =0) is T}.

Hence Ind(Z}) € IT} so that Ind(Z}) < AL. To show that the inclusion is proper
observe that if T'is the set of </-theorems then w — T e A} while w — T ¢ Ind(Z,)
as T is complete for Ind(Z?).

At first glance it might appear that E, and E¥ are of comparable strength so
that one might conjecture that Ind(Z}) is the family of sets semi-recursive in E,.
We shall see that this is very far from being the case. This is in contrast to the
situation for E and E* = F{},. Here the sets semi-recursive in E and E* coincide.

The superjump, introduced by Gandy in [2] is the analogue of the ordinary
jump at onetype up. We shall here formulate it as a mapping & from total func-
tionals iaF(e) to total functionals laS(F; o)

{a(0)} (F, Ata(t + 2); a(1)) + 1 if this is defined
S(F;0) {

0 otherwise.
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Let F < oF' if Fis partial recursive in F’ and let F < F'if [F < F' & F’' & F]
while F=F' if [FLF &F' £.F].

The basic properties of & may be formulated as follows:

(1) For total F,F < ;&(F) and if F,F' are total

F g oF' = G(F) < 1S(F).
(2) If 20 is the total functional that is everywhere O then
&(*0) = ;S(E) = 7E;.

THEOREM 3 (Gandy) &(F)is partial recursive in F, E¥ uniformly in total
functionals F.

Proor. The basic idea of the proof is that for total F, {e}(F,a; x) is defined
if and only if there is no infinite branch in its computation tree. The existence,
or non-existence of such a branch can be decided by suitably applying E;* The
computation tree for {e}(F,«; x) may be described as follows: At the root of the
tree place the integer (e,x). If an integer n occurs at a point P of the tree then
integers are placed at points immediately above P on the tree according to the
following criteria:

If n=((0,a),y), or n=((3,0),y) then no integer occurs above P in the tree.
If n =((1,a,b),y) then (a, ), (b, y) and also ({a} (F,a; y), {b}(F,a; y)) if defined
occur at points immediately above P in the tree. If the third integer is not defined
then call P a critical point of the tree. If n = ((2,0), y) then for each m the integer
(v, m) occurs at a point immediately above P. If n is not of one of the above forms
then just the integer n occurs at a point immediately above P. By examining the
inductive definition of V(F,«) it is not hard to see that {e} (F,«; x) is defined iff
there is no infinite branch in its compuitation tree and that if there is no infinite
branch no point of the tree can be critical. We shall code finite or infinite branches
by the sequence of integers occurring on them. We shall define a functional
G(a; (e, x,y)) partial recursive in F such that

1) G(z; (e,x,B(n))) = 0 iff B(0),--+, f(n — 1) code a branch on the computation
tree.

(2) G(x; (a,x,B(n))) =1 iff B(0),---,B(n —2) code a branch P,--+P,_, on the
computation tree, P,_, is not critical but f(n — 1) does not occur at any point
immediately above P,_,. Then E}(lyG(a; (e,x, y))) is always defined and
E¥(AyG(a; (e, x,y)) =0 if {e}(F,a;x) is defined. So that by a definition by
cases we may prove the theorem.
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Before defining G we define a functional H(x; (a,b)) partial recursive in F
such that

(3) H(z; ((e,x),b))=1 iff b occurs on the computation tree for {e}(F,u; x)
immediately above the root point

(4) H(e; ((e,x),b)) = 0 iff the root is not a critical point of the tree but b does
not occur immediately above this point.

Let

1 it S(x,y)
H(a; (x,y)) ~ { )
H'(o; (x, y)) if 1S(x, )
where S is a recursive relation defined by:
S((n,a),x),y)<>[n=1&(y = (n(a),x)or y = (5(a),x))]
or [n=2&x =n(y)]
or[n=3&y=((n,a),x)&(n=3=a#0)]

and H’ partial recursive in F and is defined by:

H'(x; (((n,4),x),))
Lif n=1&y =({n(a)} (F,a; x),{5(a)} (F,; x))
= {0 if n#£1 or y#({=(a)}(F,a; x),{8(a)} (F,a; x))
Now G may be defined by a course of values recursion from H.
G(a; (e,x,0)) = 1

1if b =(e,x)
{0 if b#(e,x)
G(o; (e,x,5s*a,bd)) ~ H(x; (a, b)) if G(u;(e,x,5*ad)) = 1

G(a, (e, x,<b>))

and is undefined otherwise.

Properties (1) and (2) for G follow from (3) and (4).

Using the superjump there is a natural method of simultaneously defining a
system of notations ¢S, <g> for ordinals and a hierarchy (F,,]aeS) of total
functionals. This definition is analogous to the definition of a hierarchy of hyper-
analytic predicates given at the end of [6].

S1. 1€S,F(¢)=0. S2. If yeS then 2’eS and y <z2” and F,, = &(F,).
S3. If for all n y,={y} (F,;n)eS &Y, < sVu+1 and y, =u then 3“5’eS and
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yn <s3"5” for all n and Fyusy(a) = F 0y (Ma(t + 1). S4. If x <5y and y <szthen
x < gz. S5. x€ S and x < gy only as required by S1-S4.

By Theorem 3 we may easily show that S and {(x, y) | X <gy} are semi-recursive
in E} and that for all ae S F, is recursive in E} . Also we may assign an ordinal
lal to each aeS by
1] =0
2[=|y|+1

‘ 3::Syl = S8UP, <4

Va| where y, is defined in S.3.

and show that if lal < ]b| then F, < ;F, for a, beS. Hence if ]al < ]b] then
&(F,) £ ¢F, for a,beS.

Thus E, is already recursive in any F, for Ia [ = 2 while for each a € S there are
functions recursive in E} that are not recursive in F,.

The above definitions raise the following problem: Is every total functional F,
that is recursive in E}, recursive in F, for some aeS ?

The answer to this question is negative even if E¥ is replaced by the superjump.
But Platek has recently shown that a type 1 function is recursive in the superjump
if and only if it is recursive in some F, for a & S. Hence Sup{|a|: a € S} is the sup
of the order types of well orderings of sets of invegers recursive in the superjump.
On the other hand work of W. Rizhter suggest that Ef may be used to get much
larger ordinals than this so that E ¥ appears to be even more powerful than the
superjump.

§5. The weak /-system. In this section we give a characterisation of the
sets recursive and semi-recursive in E, in terms of strong and weak representability
in a system (4,,-.) obtained from (4,) by replacing closure under the </-rule
by closure under the following weakened form of the <7-rule:

T is closed under the w-o rule if

Va[¢(n) e T or 1¢(n) e T] &Ia¥n[p(%(n)) € T] = IWnd(#(n)) e T.

Let F,_ ¢ denote that ¢ is a w — =/ theorem. Note that the w — o theorems
are still closed under the w-rule and hence also under the dual 7-rule.

LeMMA 5.1. The set of w— </ theorems is semi-recursive in E,.

Proor. Let f, be the partial function whose domain is

{lg1 ‘ by} U {1 ‘ w19}
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and such that fo("¢") =0 if +,-,¢ and fo(TY) =1 if +,_,—1¢. We shall prove
the lemma by showing that f, is partial recursive in E;.

Let Ax. E, I, Sh. be asin the proof of Lemma 1.1, Let ng be a recursive function
such that ng'¢") =741 for formulae ¢.

Then f, may be characterised as the least function f such that:

ae Ax.=>f(a) =0.
[aeE &Vn[f(Sb.(a,n)) =0 or f(Sb(a, n)) = 1]
& J2¥nf(Sh(a, &(n))) = 0] =f(a)=0
f(ng(a)) = 0 =f(a)=1.
An[f(n) =f(I(n,a)) = 0] = f(a) = 1.
Define F as follows:
F(f;(0,a))=0 if aeAx.
F(f;(1,a))=0if aeE&E (Ax(1 — f(Sh.(a,x)))) =1
F(f;@2,a)) =1 if f(ng(a))=0.
F(f;(n+3,a)=0if f(n)=f{(n,a))=0.
F(f; x) is undefined otherwise.

Then F is partial recursive in E, and the above characterisation of f, may be
rephrased as: f; is the least function f such that

[3nF(f; (n,a)) =i]=> f(a) = i.
There is a recursive function h such that
{h(e,a)}(Ey; n) = Z(F(Ax{e} (E;; X)); (n,a))

where Z(y) =0 for all y.

Let H(f;(e,a)) ~ F(f;(v(h(e,a)), a)) where v is a selection operator for
recursion in E,; given by §2 Proposition C. Then H is partial recursive in E,.

By the first recursion theorem there is a least function g partial recursive in E,
such that

H(\xg(e,x); (e,x)) = g(e,x).

Then for every e g, = Ax g(e,x) is the least solution of

H(f; (e,x)) ~ f(x).

By the second recursion theorem choose e, such that
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g(eo,x) = {eo} (Ey; x).

We shall show that f, = g, , concluding the proof.

If H(fy; (eg,x) = i then InF(f,; (n,x)) =i so that fo(x) = i by definition of f,.
Hence by the characterisation of g, ,g., < fo.

Conversely, if InF(g, ; (n,a)) =i then as g, < fo, InF(fy;(n,a)) =1 so that
fo(a)=i.Also H(g,,; (¢, a)) is defined so that by definition of g, , g, (a) is defined.
Suppose g,,(a) = i. Then fy(a) = i so that j = i. Thus we have shown that

InF(g.,; (n,a)) =i=g,(a)=1i.

Hence f, < g,, by definition of f,.

LemMma 5.2, V(E,,®) is weakly w — s representable.

Proor. The above set is T’ where

T(X) = A, UT(X) UTg (X).

Let ¢(X,x) be ¢(X,x) Vv ¢(X,x) v ¢3(X,x).3
where

¢1(X,x) is (3a,y,2) [x =((0,a),y,2) &[al(y) = 2]
$2(X,x) is (3a,0,,2,y1,52) [(@,y,y1) € X &(b,y,y.) e X
&(y1,y2,2)eX &x =((1,a,b), y,2)]
and ¢;(X,x) is
@y,2) [x=(02,0),y,z) &Vadm(y,n,m)e X &[(z = 0 &Va3n
(7,8(n),0) e X) v(z =1&3a¥nIm m > 0&(y,a(n),m)e X]]
By the definition of ¢ it is an &/-formula defining I, As in the proof of Lemma
1.3. define ®(X),¢(x) and
T={xewk, - 0(x)}.
It is sufficient to show that ' = T, T< I'® as in the proof of Lemma 1.3.T®° = T
follows from the following lemma.
LemMMA 5.3 ¢(T,x) is true =t,_ 0(X) - ¢(X,x)

Proor. First notethat we may formalise the proof of Funct(V(E,, &), V(E,.&))
to show that

¢y Fu-wlVe, %, 3, 5") [$((e, %, y)) & ((e,x, YN = y = y']
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If (T, x) is true then ¢(T,x) is true for i = 1,2 or 3. If i =1 or 2 then it follows
from the proof of Lemma 1.4 that

k-2 @(X) = §(X, x)
as the «/-rule is not required in these cases. Hence it remains to show that
() ¢3(Tx) is true =k, _,B(X)— ¢5(X, x).

Suppose ¢5(T,x) is true. Then there are y, z such that

3) x=(2,0),y,z) &Vndm(y,n,m)e T and
(4a) z=0&Vadn(y,d(n),0)eT or
(4b) z=1&3oa¥nIm m>0&(y,&(n),m)eT.

Hence as in the proof of Lemma 1.4.
&) Fo_g®(X) - [x =((2,0), y,2) &VnIm(y,n,m)e X |
and if (4a) holds then
(6a) Frv-a®X) - [z =0 Vvin(y,#(n),0) € X
If (4b) holds then we can show
@) Javnt, - X Y(X,a(n))

where Y(X,v) is [®(X)—>3Im m>0&(y,v,m)eX].
To use the w — 7 rule we need to show that for all n either

(7a) bV XY(X, 1)
or
(7b) Fooa VXY (X, n).

By (3) Vadm F,_,¢((y,n,m)). So for each n either
(8a) 3m > Ok, _ 4 d((y,n,m))
or
(8b) Fro-a®((y,2,0)).

(8a) implies (7a) while (8b) and (1) imply
Fy-uVm>0=1¢((y,n,m))

which implies (7b). Thus for each n (7a) cr (7b) holds, so that we may use the
w — & rule to infer from (7)
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F - WYX [Y(X, #(n))]

which, as z =1, implies

(6a) Fo—og®(X) - [z = 1&IWVndm > 0(y,¥(n),m) e X|.

Thus we have shown that (3) = (5), (4a) = (6a) and (4b) = (6b). From these
implications we may infer (2), proving the lemma.

The following consequence of Lemmas 5.1 and 5.2. may be proved along the
lines of the proof of Theorem 2.

THEOREM 4. If A< w then
(a) A is semi-recursive in E, iff A is weakly w — &/ representable
(b) A is recursive in E{ iff A is strongly w— o/ representable.

§6. Generalisations. In this section we shall give definitions and state results
generalising the results of the previous sections.

By a quantifier we shall here mean a family & < P(w). Given such a family
we may extend the language of second order arithmetic to allow formulae of the
form % x¢(x). The interpretation in the standard model is extended to the larger
class of formulae so that Fx¢(x) is true iff {new]d;(n) is true} e #. The dual
quantifier to F is F° = {0 — 4/A¢ F}. We shall use F° x ¢(x) to abreviate
1 Fx1¢(x). The class of F-formulae is the class of formulae containing those
of the form (¢ = ), (s, = ©), o € X built up using v, &,3x, Vx, Fx, Fx, where
o,n are representing terms., The F-inductive definitions are those definable by
F-formulae. Below we shall always assume that & is positive. i.e. A 2 Be F
implies A€ %. Then #° is also positive and the F-inductive definitions are
monotone. Ind(#) is defined as in §1 where & is here used to denote the class of
F-inductive definitions.

We now define a theory (45) obtained from the theory of second order arith-
metic by extending the schemas to apply to all formulae in the extended language
and adding the following axiom scheme and infinitary rules of inference.

Vx[p(x) = Y (x)] = [Fxd(x) > Fxyp(x)].
The w-rule
The F-rule

The #°-rule.
where a set T of formulae is closed under the #-rule if

™) {neo|¢m)eT}eF = Fxp(x)eT.
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for all formulae ¢(x). The & %-rule is obtained by replacing & in the above by #°.
The theorems of the above system (Az) will be called the #-theorems and Fg¢
will denote that ¢ is an #-theorem. Note that every sentence that is an F-theorem
is true.

The Z-rule may be weakened to the w— & rule, where T is closed under the
w — Z rule if (*) holds whenever

Va[¢(n)e T or —1p(n)e T].

Similarly for the w — #° rule. The theory (4,,_4) is obtained as is the theory
(A;) except that the w — % and the w — #° rules are used rather than the &
and Z° rules.

Given & we may define two functionals F, and F¥ where F, is the restriction
of F} to total functions and

0 if {x|f(x)=0}eF°

F ~
>0 {1 if {x]f(x)>0}es

and is undefined otherwise.
In the following we shall assume that E is partial recursive in both F, and
F} so that §2 Propositions C and D apply to both Fz and Fj.

THEOREM 5.

(a) The following are equivalent for A < w:
(1) AeInd(#)
(2) A is weakly F-representable
(3) A is semi-recursive in F.
(b) The following are equivalent
(1) A is strongly F-representable.
(2) A and » — A are weakly F-representable.

(3) A is recursive in Fj.
THEOREM 6.

(a) A is weakly w — F representable iff A is semi-recursive in Fg.

(b) A is strongly w — & representable if A is recursive in Fg.

The proofs of these results involve no new ideas other than those exhibited in
previous sections. Note that Theorems 5 and 6 remain true when the axioms of
(Ay) or (4,._5) are extended by adding a recursive set of true sentences. The
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previous sections give proofs of the special case when & = o/ = {4 < a)| JaVna(n)
€ A} and [x¢d(x) —IWnd(#(n))] is added as an axiom for each formula ¢(x).
An application to a more familiar case is when & = {w}, and the only infinitary
rule is the w-rule, when F; is just E.
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