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ABSTRACT 

We answer two questions posed in a recent paper by H. B. Enderton by giving cha- 
racterizations of the sets of integers weakly and strongly representable in a system of se- 
cond order arithmetic with an infinity rule of inference, q-he results generali2e to each of 
a family of such systems. 

The main aim of this paper is to give characterisations of the sets of integers 

weakly and strongly representable in a system (A~¢) of second order arithmetic. 

This answers questions posed in [1] where this system was introduced. (A~) is 

obtained from full second order Peano arithmetic (A) (see [1], [3]) by adding the 

following infinitary rule of inference: 

d- ru le :  For any function c~, from ~(~(n)) for each n, infer ~vVxqS(~(x)). 

We shall give two characterisations of the weakly and strongly d-representable 

sets. The first is in terms of the class of monotone E l , inductive definitions, 

while the second is in terms of recursion in the functional E~ where, for partial 

functions f 

0 if V~3nf(~(n)) = 0 { 
1 if 3xVnf(~(n)) > 0 

Note that the functional E 1 introduced by Tugu6 is just the restriction of 

E~ to total functions. We shall see that recursion in E1 is very different to recursion 

in E~. We show that if the d - ru le  is suitably weakened we can define a theory 

(Aw_~) such that representability in this system may be characterised in terms of 

recursion in El. 

* This paper was written while the author held a Science Research Council fellowship. 
Received September 1, 1969. 
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In §1 we define the E(  and d-inductive definitions and use them to characterise 

the weakly d-representable sets. In §2 we give schemes sufficient to define the 

class of functionals partial recursive in any given consistent functional, and state 

the basic properties of this notion. In §3 we give the characterisations of weak 

and strong .~¢-representability in terms of recursion in E~. §4 contains a result 

implying that E~ is much more powerful than El.  The system (Aw-~¢) with the 

weakened d - r u l e  is introduced in §5 and we characterise weak and strong rep- 

resentability in this system in terms of recursion in E t. Finally in §6 we give 

definitions and state results that generalise the previous results to a large class of 

systems of  second order arithmetic. 

We wish to thank Peter Hinman for informing us of his contribution to pro- 

position C in §2 below which enabled us to complete our characterisation of the 

strongly d-representable sets. 

Preliminaries. On the whole we follow the notation of [3] and [1]. For  

convenience we shall allow set variables as well as function variables in the system 

(A). Thus atomic formulae of the form a ~ X are allowed where o- is a term and X 

is a set variable, and (VX)q~, (3X)~b are formulae whenever q5 is. We shall need to 

add the appropriate axioms for these quantifiers and the comprehension schema 

3XVc~[~b ~-*x ~ X] where X is not free in qS. We assume that (A) is axiomatised so 

that modus ponens is the only rule of inference. We recall that in any system T 

containing numerals n for integers n, a set A ~_ o9 is weakly T-represented by the 

formula qS(v) if A = {n e ~o] J-TqS(n)}. A is weakly (strongly) T-representable if 

there is a formula qS(v) such that A is weakly T-represented by ~b(v) (and also 

09 - A is weakly T-represented by --1 qS(v)). If a = a(vl ,  . . . ,  v,) is a term in the free 

variables v l , ' " , v ,  we shall call a a represent ing term for a function f if 

f ( k x ,  "",  k , )  = m ~  I-(.4)a(kl, . . . ,kn)  = m 

Note that every recursive function f will have a representing term which we shall 

write asf(v~,  . . . ,  v,). If a is a representing term with no free variables then there is 

an integer n such that I-(a)a = n If a ,n  are two such terms then ~-(a)a = n or 

~'~A~-~(a = n). 
Sometimes it is convenient to extend the language by adding set constants 

A for A ~ ~. Given a sentence q5 in this extended language the truth value of q~ is 

obtained by interpreting ~b in the standard model of second order arithmetic in 

the obvious way. 

We shall make use of a fixed primitive recursive pairing function 2x, y (x ,  y)  
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with primitive recursive projection functions ~ and 5 We shall write (x,y, z) for 

(x,(y, z)). r¢1 will denote the gadel number of the formula ¢ in some standard 

numbering of formulae. Sometimes we shall not distinguish between a set of 

formulae and the set of gSdel numbers of elements of the sets. Finally we recall 

from [1] that as well as being closed under the d - ru le  the d- theorems are closed 

under the co-rule: 

Vnl-dq~(n) =~ }-~¢Vxq~(x), 

and that this implies closure under the dual d- ru le :  

§1. Monotone Z~ intinetive deliaitions. By an inductive definition we shall 

mean a mapping F: e (co)~  P(w) where P(co)= {AIA c co}. Given F we may 

define sets of integers F x by transfinite recursion on the ordinal 2; 

F a =  U {F(FU)J# < ;t}. Let IF[ be the least ordinal 2 suzh that F ~+x = F a. Then 

j F I exists and is countable. F ~ = F Irl is the set inductively defined by F. We shall 

only be concerned with monotone F i.e. if A ~ B then F(A) ~ F(B). For such 

F, F(F ~) = F ~ and F ~° may be characterised by the following two properties: 

(2) F(A) _~ A * F ~ _= A 

Hence F ~o may be defined by 

(3) F ¢° = n {A _ co [ F(A) ___ A} 

An inductive definition F is El if there is a Zl predicate R(a, n) such that 

n V({n co I = 0}) n) 

LEMMA 1.1. The set of d-theorems is definable by a monotone Z~ inductive 

definition. 

P~ooF. Let Ax be the set of axioms of (A~) and let E be the set of formulae 

of the form ~vVn4~(~(n)). Then Ax. and E are recursive sets Let I and Sb. be 

recursive functions such that 

for formulae ~b, ~ and 

Sb.(r3vVn~(P(n)) 7, x) = r¢(x)n 

for formulae ~b(v) and integers x. 
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The set of d- theorems is definable by the monotone YJ inductive definition F 

where 

F(A) = Ax. u {a e to 13n[n e A &I(n, a) e A]} k) {a e E I ~aVn[ Sb.(a, ~(n)) e A]} 

The d- formulae  (in the set variable X) are the class of formulae built up from 

formulae of the form (a= n), ~ ( a = n ) ,  a e X  using v,&,3x,Vx,  s~Cx, d ° x  where 

a, 7~ are representing terms and d x ¢ ( x ) ,  ~¢°x¢(x) are ~vVx¢(~(x)), Vv3x (o (~(x)) 
respectively. Note that X occurs only positively in an ~¢-formula. An ~¢-formula 

~b(X, x) with only one free number variable x defines an inductive definition F if 

F(A) = {n e to I ~b(A, n) is true}, 

and such F will be called ~¢-inductive definitions. Note that an ~'-inductive 

definition is automatically monotone. 

LEMMA 1.2. Every monotone Elt inductive definition is an ~¢-inductive 

definition. 

PROOF. Let R be 211 such that 

x e r({n [ ~(n) = 0}) ~* R(~, x) 

If  F monotone then 

x e F(A)¢:, 3aVn[(a(n) = 0 ~ n e A) & R(a, x)] 

There is a recursive S such that R may be put in the form 

R(a, x) ~* ~flVnS(Cc(m), fi(m),x) 

So 

Let 

and 

Let 

and 

x e F(A) <* 3c~3flVn[(n > 0 & e(n - 1) = 0 ~ n - 1 e A) & S(~(n),fl(n), x)] 

fo(s) = ( ~ ( ( S ) o ) , . - . , r c ( ( s ) t h ( ~ ) + l ) )  

f~(s) = ( ~ ( ( S ) o ) , " ' , ~ ( ( s ) t , ( . ) + : ) )  

f o ( 0 )  = f l ( 0 )  = O. 

if s > 0  

representable. 

go(s) = ~( ( s )~h~s)+l )  

gl(s) = lh(s) + 1. 

If O(vo, vl, v2) is an d- formula  defining S then the following ~¢-formula defines F 

vgn[((~(n) = 0) v ~ (go(~(n)) = 0) v g t(~(n)) e X)  & O(fo(~(n)),ft(~(n)), z)] 

LEMMA 1.3. Any set defined by an d- induct ive deJinition is weakly d -  
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PROOF. Let q~(X,x) be an d formula defining the inductive definition F. 

Let O(X) be Vv[q~(X, v) ~ v e X] and let qS(x) be VX[O(X) ~ x ~ X] Then 

n ~ F ~ ¢~ q~(n) is true. 

We shall show that ~b(x) weakly ~'-represents F ~°. Let T =  {n~co I ~-~q~(n)). 

We must show that F ° ° =  T. Clearly T _  F ~, as every d -p rovab le  sentence is 
true. To show F ® _~ T it is sufficient to show that F(T) _ T. i.e. that ~b(T, x) is 

true =~ [ - ~ ( X ) ~  x ~ X, By definition of O(X) it is sufficient to show that 

q~(T,x) is true =~ t-~¢~(X) ~ qS(X, x), which is a trivial consequence of the following 

/emma. 

LEMMA 1.4. For every d-formula O(X) with no free number variables 

0(T) is true =~ I-dO(X) ~ O(X). 

PROOF. By induction on the structure of the d - f o r m u l a  O(X). If O(X) has the 

form (a = re) or --a(a = n) then the lemma follows from the fact that a, Tz are 

closed representing terms. If O(X) has the form (a ~ X) then, if 0(T) is true then 

there is an n ~ T such that (a = n) is true, so that I-~(a = n )&[O(X)-~  n e X] 

which implies that t-~¢~(X) ~ O(X). 

If  O(X) has the form Ol(X ) v02(X ) then if 0(T) is true then 01(T ) is true or 

02(T) is true. Hence by the induction hypothesis ~-~(X) ~ 01(X) or I-~@(X)~O2(X) 
giving t - ~ (X)  -~ O(X). 

If  O(X) has the form O~(X) & 02(X) then the proof  is similar to the above. 

If O(X) has one of the forms ~xd~(X, x), Vxc~(X, x), ~¢xdp(X, x), ~¢f~x49(X, x) then 

the proof  has the same form in each case except that at the appropriate place use 

s made of the dual co-rule, co-rule, ~'-rule and dual ~'-rule respectively. We illustra- 

te when O(X) has the form ~xO~(X, x). If 0(T) is true then 3c~Vn[01(T,~(n)) is true]. 

By the induction hypothesis 3aVnl-dqb(X ) ~ 01(X,~t(n)). Using the d - r u l e  we get 

t-~3v'Cn[~(X) ~ 01(X, ~(n))] and hence I -~ (X)  ~ O(X). 

We summarise the above results in Theorem 1 below. If  ~ is a class of inductive 

definitions let Ind(ff) be the family of those sets 1-1 reducible to sets defined by 

an inductive definition in oK. Let Z~, ~¢ denote the family of monotone Z~ and 

~¢-inductive definitions respectively. 

THEOREM 1. The following are equivalent for A ~_ ~o 
(1) A is weakly ~¢-representable. 

(2) A ~Ind (E~) 

(3) A e Ind (sl) 
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PROOF. (1) o (2) If  O(v) weakly d-represents A then n e A ¢,, r0(n)a e F °° where 

F is the monotone Z~ inductive definition given in Lemma 1.1. But 2xrO(x)l 
is a I-1 recursive function. 

(2)--* (3) This follows from Lemma 1.2. 

(3) ~ ( 1 )  Let n e A e ~ f ( n ) e F  ~, where F is an d-inductive definition and f 

is a 1-1 recursive function. Then by Lemma 1.3 there is a formula O(v) such that 

n e A ~ F~,O(I(n)). 

If  O'(v) is O([(v)) then O'(v) weakly d-represents A. 

§2. Reeursian Theory in a consistent functional. By a functional we shall 

mean a map of one of the forms 2fxF(f; x) or AfF(f) where f ranges over partial 

functions. We shall always assume that F is consistent, where ,~fxF(f; x) is con- 

sistent if f ~_ g ~ ).xF(f; x) ~ 2xF(g; x) and 2fF(f) is consistent if f ~_ g &F(J) 

= y ~ F(g) = y and f _~ g means that f is a subfunction of g. 

We wish to define when a partial function or functional is partial recursive in 

2fF(f). This will be done by defining an enumeration function 2efx{e}(F,f; x) 

for the functionals partial recursive in F as in [5]. We could use minor modi- 

fications of the schemes given there, so that they would apply to functionals 

2fF(f) that may be defined on partial functions. Rather than do this we will use a 

simplified set of schemes which will have the same effect. (2x[a](x)[ a < o~) 

will denote a standard recursive enumeration of the primitive recursive functions. 

Given 2gF(g) and f, we define 2ex(e} (F,[; x) to be the least function q satisfying 

the following schemes: 

q((O,e),x) = [el (x) 

q((1,a,b),x) ~- q(q(a,x),q(b,x)) 

q((2, 0), x) " F(2yq(x, y)) 

q((3,0),x) ~-- f (x) .  

As F is consistent it is easy enough to see that the above schemes do determine 

a least function. We make this precise by giving a monotone inductive definiton 

F of V(F,f)  = {(e,x, y)[ {e} (F,f ;  x) = y}. 

Let 
r(X) = A0 w A~, w F,(X) w r 6 X )  

where 
A o = {((0, a),x,  Y) I [a] (x) = y} 

A s. = {((3, O),x, y) I f (x)  = y} 
and 
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FI(X) = {( (1 ,a ,b) ,y , z )13yly2[(a ,y ,  y l ) , (b ,y ,  y2 ) , ( y~ ,y2 , z )eX]}  

FF(X) = {((2, 0), y, z) I ~g[F(g) = z & Vuv(g(u) = v ~ (y, u, v) e X)]} 

We now define V(F, f )  to be F °~. To conclude the definition of the enumeration 

function we must show that V(F, f )  determines the graph of a partial function. 

i.e. if 

Funct(X, Y) ~ Vexyy'[(e, x, y) e X & (e, x, y') e Y-~ y = y'] 

we must prove the following lemma. 

LE~IA 2.1. Funct (V(F, f ) ,  V(F,f)) .  

PROOF. This may be proved straightforwardly by proving Funct (F~,F ~) 

by transfinite induction on the ordinal 2. But it is convenient to give a proof 

that does not use ordinals, as we shall need to observe that the proof can be 

formalised in a system of analysis. So let Xo = {x e co ] Funct({x}, F°°)}. Clearly 

Funct(Xo,F~).  By Lemma 2.2 below Funct(F(Xo),F °~) as F(F ~°) = F °°. i.e. for 

all x eF(Xo) Funct({x},F °°) which means F (X0)_  X0. But this implies that 

F ~ ° -  ~ Xo which is just another way of stating Funct(F~°,F~°). 

LEMMA 2.2. For all X o , X  i c_ co, Funct(Xo,XO=~ Funct(F(Xo),F(X1) ) 

PROOF. If {(e,x) l qy(e, x, y) e Yo} n {(e,x)] 3y(e,x, y) ~ I11 } = ~ ithen Funct 

(Yo, Y1). Hence for all distinct pairs Yo, Y1 from Ao, Ay, Fl (Xo) ,Ur(Xt) ,  we 

have Funct(Yo, Y0. Trivially, Funct(Ao,Ao) and Funct (Ar, Ay). Hence to prove 

the lemma it is sufficient to show that 

Funct(Xo, X~) ~ Funct(F~(Xo), F~(X1)) & Funct(Fr(Xo),Fr(x0) 

Now assume Funct(Xo,X0 

(a) If ( (1 ,a ,b) ,y ,  zi) eFi(X~) for i = 0,1, then there are Yl,Y2 such that 

(a, y, y~), (b, y, y~), (y~, y~, zg) ~ Xi for i = 0,1. 

Hence by hypothesis yO y~, yO 1 = - -  Y 2 ,  SO  that z o = zl. 

(b) If ((2, 0), y, z~) e Fr(X~) for i = 0, 1 then there are g~ such that F(g~) = z~ and 

gi(u) = v ::> (y, u, v) e X~ for i = 0,1. 

Hence by hypothesis go, g~ are compatible and so have a common extension g 

say. But F is consistent so that Zo = F(go) = F(g) = F(gO = zl.  

Having proved Lemma 2.1., we may define {e} (F,f; x) to be the y such that 

(e, x, y ) e  V(F , f )  if there is such a y, and undefined otherwise. 
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We shall write {e}(F,f), {e}(F; x) for {e}(F,f; O),{e}(F,(o,x) respectively, 

where ~b denotes the completely undefined function. Sometimes we shall omit F 

if there is no ambiguity. 

A functional or function is partial recursive in F if it has one of the forms 

2fx{e} (F , f ;  x), 2f{e}(F, f),2x{e} (F; x) for some e ~ co. The set A of integers is 

recursive, semi.reeursive in F if ca, tra respectively are partial recursive in F where 

cA(x ) = aA(X) = 0 if X e A 
and 

ca(x) = 1, o'4(x ) is not defined if x ¢ A. 

A function or functional is partial recursive in 2fFo(f),  . . . ,2 fF,( f )  if it is 

partial recursive in F where 

F(T) ~- F~(2tf(t + 1)) if f(0) = i =< n 

and is undefined otherwise. 

Rather than go through the tedious proof of the equivalence of the notions 

introduced here with those in the literature we shall list some properties of our 

notion that would be needed in any such proof. Anyone familiar with Kleene's 

papers should find no great difficulty in proving these. 

PROPOSITION A. Let q be a binary partial function such that there are primitive 

recursive functions fo,ft  such that 

q(fo(a), x) = [a] (x) 

q(f~(a, b), x) ~- q(q(a, x), q(b, x)). 

Let Mq = {2xl "." x,q(e,(xl, ...,x,)) I n, e < co}. 
Then Nq contains all the partial recursive functions, q e ~q, Nq is closed under 

explicit definitions, definitions by cases, primitive recursion and minimalisation. 

Also the iteration and second recursion theorem hold, i.e. there is a primitive 

recursive S such that 
q(S(e, x), y) ~- q(e, (x, y)) 

and for every f e N q  there is an e such that 

q(e,x) "vf(e,x). 
PROPOSITION B. 

(1) Substitution. If f,2gxF'(g; x) are partial recursive in F then so is 

2xF'(f  ; x). 
(2) Transitivity. If F" is partial recursive in F '  and F '  is partial recursive in 

F then so is F". 
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(3) First recursion theorem. 
equation 
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If 2 fxF ' ( f ;  x) is partial recursive in F then the 

F'( f ;  x) "-'f(x) 

has a least solution f partial recursive in F. 

An important property that may hold is given by the following: F has the 

Selection Operator Property if there is a function v partial recursive in F such 

that v(e) is defined ~:~ ~x{e}(F; x) = 0 and ~x{e} (F; x) = 0 ~ {e} (F; v(e)) = O. 

If ~ ~ P(co) such that A _  B ~ f f  :~ A ~ ~- then we may define a functional 

F * by 

0 if {x If(x) = 0} e ~ o  

F,~(f) '-" 1 if {x If(x) > 0} e ~- 

where ~-o = {co _ a [ a  ¢ ~-}. 

Let F~ = F~ Icoo~. 

Examples are E = F{~,} and E 1 = F~ where ~ '  = {A __%_ co I ~Vn~(n) e A}. 

Clearly every F~ is total, i.e. dora F~ = co,.. 

In general F need not have the selection operator property, e.g. if F is total 

with constant value 0 then F does not have the selection operator property. 

On the other hand we have: 

PROPOSITION C. (Gandy, Hinman) If E is partial recursive in F and either F 

is total or F = F~ for some ~- then F has the selection operator property. 

For total F the result was announced by Gandy in [2]. For F of the form 

F~ the result is proved by Hinman in [4]. 

Several important properties follow from the existence of a selection operator. 

PROPOSITION D. If F has the selection operator property then 

(1) If  A, B are semi-recursive in F then so are A u B, {y ] 3x(x, y) ~ A}. 
(2) A is recursive in F, ,~A,co-  A are semi-recursive in F. 

(3) f is partial recursive in F~:~ the graph o f f  is semi-recursive in F. 

§3. Reeursi~n in Ei ~ . In this section we show that the sets weakly (strongly) 
d-representable are exactly the sets semi-recursive (recursive) in E~. 

LI~MMA 3.1. F(X) = A0 UFI(X)  UF~(X) i s  an d-inductive definition, 

PROOF. Clearly A o u FI(X ) is definable by an d- formula  while 
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x e F ~  (X) ~ -  

3y z Ix = ((2,0), y, z) & 

[(z = O&Vo~Sn(y,~(n),O)eX) or (z = 1 &3~VnSm(m>O&(y,~(n),m)eX))]] 

may also be written as an d-formula.  

L E n A  3.2. / f  F is a Z11 monotone inductive definition then F ~ is semi- 

recursive in g~. 

PROOF. By the proof of Lemma 1.2. we may write 

x e F(X) ~=~ 3zVn[(R1 (~(n)) v gl(~(n)) e X) & Sl(~(n),x) ] 

where R1,Sl ,g  1 are recursive. Let F(f;  x ) =  1 if 

3xVn[(Ri(Yt(n)) v f ( g  1 (~(n))) = 1) &Si(~(n),x)] 

and F(f;  x) is undefined otherwise. 

Then F(f  ; x) ~_ E~(2yG(f  ; (y,x))) where 

1 if (Ri(y) or f(gl(Y)) = 1) & Si(y, x) 

G(f; (y,x)) ~_ 0 if (-TRx(y)&f(gl(y)) ~ 1) or -1Sl(y,x) 

G is a partial recursive functioaal so that F is partial recursive in E~. 

Let g be the least solution of F(g; x)~_ g(x). Then g is partial recursive in 

E~ by the first recursion theorem. Hence F ~ is semi-recursive in E~ as x e F ~° 

~ g ( x )  = 1. 

T~EOREM 2. 

(a) A is semi-recursive in E~e:>A is weakly d-representable. 

(b) A is recursive in E~ <:>A is strongly s]-representable. 

PROOF. ( a ) I f  A is semi-recursive in E~ then there is an eo such that 

xeA~{eo} (E~;x )=O<~(eo ,x ,O)eF  ~ where F is defined in Lemma 3.1. 

Hence by Lemma 3.1. A e I n d ( d )  and by Theorem 1 A is weakly d-representable. 

Conversely, if A is weakly d-representable then by Theorem 1 A is 1-1 reducible 

to a set defined by a Z~ inductive definition. Hence by Lemma 3.2 A is semi- 

recursive in E~. 

(b) Let O(v) he the formula weakly ~¢-representing V(E*I, 4p) as given by 

applying Lemma 1.3 to the ~-inductive definition given by 3.1. By formalising 

the special case of Lemma 2.1: 

Funct(V(E~, ~), V(E~, c~)) 
we may show that 
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(1) J-~tVe y z z ' r 0 ( ( e ,  y,  z ) )  & 0((e, y ,  z ' ) )  -o z = z ' ]  

Now let A be recursive in E~. Then there is an eo such that 

Vx[{eo} (E~; x) < 1 &(x e A . ~  {eo} (E~ ; x) = 0)]. 

Hence 

319 

x e A ¢:, ~-~0(eo, x, 0) 

x ¢ a .~.  t-~0(eo, x, 1) 

But by (1) f-~tO(eo, x, 1)=~ F-~O(eo,x,O). Hence xCA.~-gO(eo,x,O ) so that if 

O'(v) is O(eo,v,O) then O'(v) strongly ~-represents A. 

Conversely if A is strongly d-representable then A and co-A are weakly d .  

representable so that by (a) above A and c o - A  are semi-recursive in 

Ex*. As Et # = F~ and E is recursive in E~ we may apply proposition D to show 

that A is recursive in E~. 

§4. The Extent of Ind(X]). We have given characterisations of the class of 

weakly d-representable sets as Ind(Xl) and as the class of sets semi-recursive in 

E~, but we have not yet indicated the extent of this class. The only interesting 

upper bound on Ind(X~) that we know of is that Ind(Z~) is a proper subset of the 

class of A~ sets. That In:l(X~) ___ Xz ~ follows from Theorem 3 of [1] where it is 

shown that the ~¢-theorems form a X~ set. For monotone X~ F we have 

F ~ = ¢~ {A: F(A) __q A} = {n e co I V~EVx(R(~, x) = 0 => ~(x) = 0) => ~(n) = 0]} 

is Htzif R(~ ,x ) . c , , x  e F({n ]~(n) = 0) is X[. 

Hence Ind(Z~) ~ 1-I21 so that Ind(E[) ~ A~. To show that the inclusion is proper 

observe that if T is the set of d- theorems then co - T ~ A~ while co - T ~ Ind(Yu) 

as T is complete for Ind(E~). 

At first glance it might appear that E 1 and E~ are of comparable strength so 

that one might conjecture that Ind(Y,[) is the family of sets semi-recursive in Et. 

We shall see that this is very far from being the case. This is in contrast to the 

situation for E and E g = F~}. Here the sets semi-recursive in E and E # coincide. 

The superjump, introduced by Gandy in [2] is the analogue of the ordinary 

jump at one type up. We shall here formulate it as a mapping ~ from total func- 

tionals ~F(~)  to total functionals 2 c ~ ( F ;  c~) 

~{~(O)}(F,2tc~(t + 2); ~(1)) + 1 if this is defined 
~ ( F ;  

0 otherwise. 
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Let F < TF' if F is partial recursive in F '  and let F < TF' if [F  <TF' &F' ,IZ TF] 

while F = TF' if [F  < rF' & F' < TF]. 

The basic properties of ~ may be formulated as follows: 

(1) For total F, F < T~(F) and if F, F '  are total 

F < rF' ~ ~(F) < T~(F'). 

(2) If 20 is the total functional that is everywhere 0 then 

~(20)  ~ T~(E) -~ TEl. 

THI~OREM 3 (Gandy) ~(F) is partial recursive in F, E~ uniformly in total 

functionals F. 

PROOF. The basic idea of the proof is that for total F, {e)(F, ct; x) is defined 

if and only if there is no infinite branch in its computation tree. The existence, 

or non-existence of such a branch can be decided by suitably applying E~ The 

computation tree for (e}(F,~; x) may be described as follows: At the root of the 

tree place the integer (e,x). If  an integer n occurs at a point P of the tree then 

integers are placed at points immediately above P on the tree according to the 

following criteria: 

If n = ((0, a), y), or n = ((3, 0), y) then no integer occurs above P in the tree. 

If  n --((1, a, b), y) then (a, y), (b, y) and also ({a} (F, ~; y), {b)(F, ~; y ) ) i f  defined 

occur at points immediately above P in the tree. If  the third integer is not defined 

then call P a critical point of the tree. If n = ((2,0), y) then for each m the integer 

(y, m) occurs at a point immediately above P. If  n is not of one of the above forms 

then just the integer n occurs at a point immediately above P. By examining the 

inductive definition of V(F,~) it is not hard to see that {e} (F,a;  x) is defined iff 

there is no infinite branch in its compdtation tree and that if there is no infinite 

branch no point of the tree can be critical. We shall code finite or infinite branches 

by the sequence of integers occurring on them. We shall define a functional 

G(~; (e,x,y)) partial recursive in F such that 

(1) G(~; (e,x,fi(n)))= 0 iff fl(0),...,fl(n - 1) code a branch on the computation 

tree. 

(2) G(a; (a,x,t~(n)))=1 iff fl(O),...,fl(n- 2) code a branch Po ""en-2  on the 

computation tree, P , -2  is not critical but fl(n - 1) does not occur at any point 

immediately above Pn-2. Then E~(2yG(a; (e,x, y))) is always defined and 

E~(2yG(~;(e,x,y))=O if {e}(F,a;x) is defined. So that by a definition by 

cases we may prove the theorem. 
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Before defining t7 we define a functional H(c~; (a,b)) partial recursive in F 

such that 

(3) H(~; ((e,x),b))= 1 iff b occurs on the computation tree for {e)(F, ct;x) 

immediately above the root point 

(4) H(~; ((e,x), b)) = 0 iff the root is not a critical point of the tree but b does 

not occur immediately above this point. 

Let 

1 if S(x, y) 

H(~; (x,y)) ~ H'(~; (x ,y) ) i f  -nS(x,y) 

where S is a recursive relation defined by: 

S((n, a), x), y).*~ In = 1 & (y = (n(a), x) or y = (8(a), x))] 

or  I n  = 2 & x = ~ (y ) ]  

or In > 3 & y = ((n, a), x) & (n = 3 * a ~ 0)] 

and H '  partial recursive in F and is defined by: 

~/ ' (~ ;  (((n, a), x), y)) 

(1 if n = 1 &y = ((n(a)} (F, ct; x),(fi(a)} (F, ct; x)) 

0 if n ~ 1 or y ~((7~(a)}(F, ct; x),(~5(a)}(F,~; x)) 

Now G may be defined by a course of values recursion from H. 

G(~;(e,x,0)) = 1 

1 if b = (e,x) 

G(ct,(e,x,(b))) = 0 if b ~ ( e , x )  

G(a; (e,x,s*(a,b))) "~ H(a; (a,b)) if G(a; (e,x,s*(a))) = 1 

and is undefined otherwise. 

Properties (1) and (2) for G follow from (3) and (4). 

Using the superjump there is a natural method of simultaneously defining a 

system of notations (S, < s )  for ordinals and a hierarchy ( F  a ] a e S) of total 

functionals. This definition is analogous to the definition of a hierarchy of hyper- 

analytic predicates given at the end of [6]. 

$1. l e S ,  F l ( a ) = 0 .  $2. If y e S  then 2YeS and y < s  2y and Fzy=~(Fy).  

$3. If  for all n y , =  {y} (Fu;n)eS&y~<syn+ 1 and Yo = u  then 3uSYeS and 
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y, <s3"5 y for all n and E3,s~(~) = Fy,(0) (2t~(t + 1). S¢. If x <sY andy  <sz then  

x < sZ. $5. x ~ S and x < sY only as required by S1-$4. 

By Theorem 3 we may easily show that S and {(x, y) [ x < sY} are semi-recursive 

in g~  and that for all a e S E, is recursive in E~. Also we may assign an ordinal 

l a l  to each a ~ S b y  

Ill =0 

I 2 ' l = l y l + l  
13"s'l = sup,<~l Y.I where y, is defined in S.3. 

and show that if t a I ---- I bl then for a, b e S. Hence if i a I < I bl then 

~(F . )  < rFb for a, b ~ S. 

Thus E1 is already recursive in any F, for i a [ > 2 while for each a ~ S there are 

functions recursive in E~* that are not recursive in F,. 

The above definitions raise the following problem: Is every total functional iv, 

that is recursive in E~, recursive in Fa for some a e S ? 

The answer to this question is negative even if E~ is replaced by the superjump. 

But Platek has recently shown that a type 1 function is recursive in the superjump 

if and only if it is recursive in some F: for a ~ S. Hence Sup{ia [: a ~ S} is the sup 

of the order types of well orderings of sets of invegers recursive in the superjump. 

On the other hand work of W. Rizhter suggest that E~ may be used to get much 

larger ordinals than this so that Et ~ appears to be even more powerful than the 

super jump. 

§5. The weak d-system. In this section we give a characterisation of the 

sets recursive and semi-recursive in Et in terms of strong and weak representability 

in a system (A,,_~) obtained from (An) by replacing closure under the ~¢-rule 

by closure under the following weakened form of the d- ru le :  

T is closed under the w - d  rule if 

Vn[~b(n) ~ T or -1 q~(n) ~ 7"] & 3~Vn[~b(~(n)) ~ 7"] ~ 3vVn~(~(n)) e T. 

Let t-w_~tk denote that ~b is a w - d theorem. Note that the w - ~¢ theorems 

are still closed under the co-rule and hence also under the dual d-rule .  

LEMMA 5.1. The set of w - ~¢ theorems is semi-recursive in g~. 

PROOf. Let f0 be the partial function whose domain is 

{r4,  ! u (r4,  I } 
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and such that fo(r~b 1) = 0 if Fw_Mb and fo(rq5 a) = 1 if k~,_~c-n q~. We shall prove 

the lemma by showing that fo is partial recursive in El. 

Let Ax.  E, I, Sb. be as in the proof  of Lemma 1.1. Let ng be a recursive function 

such that ngrgp l)  = r ~ b l  for formulae ~b. 

Then fo may be characterised as the least function f such that: 

a ~ Ax.  ~ f ( a )  = O. 

[a EE &Vn[ f (Sb . (a ,n ) )  = 0 or f (Sb(a ,  n)) = 1] 

& ~ V n f ( S b ( a ,  8(n))) = 01 ~ f ( a )  = 0 

f (ng(a) )  = 0 =~ f ( a )  = 1. 

~n[ f (n)  = f ( I (n ,a ) )  = 0] ~ f ( a )  = 1. 

Define F as follows: 

F( f ;  (0, a)) = 0 if a ~ Ax.  

E ( f ;  (1, a)) = 0 if a ~ E & El(J,x(1 - f (Sb . (a ,  x)))) = 1 

F ( f ;  (2, a)) = 1 if f (ng(a) )  = O. 

F ( f  ; (n + 3,a)) = 0 if f ( n )  = f ( I ( n , a ) )  = O. 

F ( f ;  x) is undefined otherwise. 

Then F is partial recursive in Ea and the above characterisation of fo may be 

rephrased as: fo is the least function f such that 

[3nE( f ;  (n,a))  = i] =~ f ( a )  = i. 

There is a recursive function h such that 

{h(e,a) } (El ; n) ~- Z(F(2x{e} (El ; x)); (n,a))  

where Z ( y ) =  0 for all y. 

Let H ( f ; ( e , a ) ) ~ - F ( f ; ( v ( h ( e , a ) ) ,  a)) where v is a selection operator for 

recursion in E~ given by §2 Proposition C. Then H is partial recursive in Ex. 

By the first recursion theorem there is a least function g partial recursive in g~ 

such that 

H(2xg(e, x); (e, x))  ~- g(e, x). 

Then for every e ge = .~x g(e,x) is the least solution of 

H ( f  ; (e, x)) "~ f ( x ) .  

By the second recursion theorem choose e o such that 
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g(eo,'x) -- {eo} (Ex; x). 

We shall show that fo = g~o, concluding the proof. 

If H(fo; (eo, x) = i then 3nF(f  o ; (n, x)) = i so that fo(x) = i by definition offo .  

Hence by the characterisation of g~o,geo ~-fo" 
Conversely, if ~nF(geo; (n,a)) = i then as geo ~-fo, ~nF(fo; (n,a)) = i so that 

fo(a) = i. Also H(g~o; (eo, a)) is defined so that by definition of g~o, g~o(a) is defined. 

Suppose g~o(a) = i. Then fo(a) = i so that j = i. Thus we have shown that 

3nF(g~o; (n,a)) = i =~ geo(a) = i. 

Hence fo ~ g~o by definition of fo. 

LEMMA 5.2. V(EI,cb ) is weakly w - d  representable. 

PROOF. The above set is F ~ where 

F(X) = A 0 k) FI(X ) k3 FEt(X). 

Let qb(X,x) be (01(X,x) v dP2(X,x) v (03(X,x).] 

where 

(01(X,x) is (3a, y ,z)  Ix =( (O ,a ) , y , z )&[a] (y )=  z] 

(02(X,x) is (3a, b , y , z , y , , y2 )  [(a,y, y l ) e X  &(b,y,  y z ) e X  

& (Yl, Yz, z) ~ X & x = ((1, a, b), y, z)] 

and ~b3(X,x ) is 

(3y, z) Ix = ((2, 0), y, z) & Vn3m (y, n, m) ~ X & [(z = 0 & V~3n 

(y,~(n),O)~X) v(z  = 1 & ~ V n 3 m  m > O&(y,~(n) ,m)EX]]  

By the definition of q~ it is an d - fo rmu la  defining F. As in the proof  of Lemma 

1.3. define ~(X),(a(x) and 

T =  {x ~ col-w_~dp(x) }. 

It is sufficient to show that F ~° = T. T_~ F ~ as in the proof of Lemma 1.3. F ~ ~ T 

follows from the following lemma. 

LI~MMA 5.3 ~b(T,x) is true ~- I-,,_~¢~(X) ~ (o(X,x) 

PROOF. First note that we may formalise the proof of Funct(V(E1, f~), V(E t , ~ ) )  
to show that 

(1) Fw_~t(Ve, x, y, y ' )  [q~((e, x, y)) & qS((e, x, y '))  ~ y = y ' ]  
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If (o(T,x) is true then Oi(T,x) is true for i = 1,2 or 3. If i = 1 or 2 then it follows 

from the proof of Lemma 1.4 that 

~ w _ ~ ( x )  - ,  ~ ( x ,  x) 

as the d - r u l e  is not required in these cases. Hence it remains to show that 

(2) (o3(T,x) is true => ~-w_.a~(X)-~ q~3(X, x). 

Suppose (o3(T,x) is true. Then there are y, z such that 

(3) x =((2,0) ,y ,z)&Vn3m(y,n ,m)~T and 

(4a) z = 0 &V~3n (y, ~(n), 0) ~ T or 

(4b) z = 1 &3cNn3m m > 0 &(y,~(n),m) e T. 

Hence as in the proof  of Lemma 1.4. 

(5) I -w_~(X)  --* Ix = ((2, 0), y, z) &Vn3m(y, n, m) e X] 

and if (4a) holds then 

(6a) t-~_~@(X) -o [z = 0 Vv'qn(y, P(n), O) e X] 

If  (4b) holds then we can show 

(7) 3c&nl-~,_~VX ~b(X,~(n)) 

where ~(X,v) is [~(X)--*3m m>O&(y ,v ,m)~X] .  
To use the w - d rule we need to show that for all n either 

(7a) 'vw_~VX¢(X, n) 

o r  

(7b) }-~,_in VXtp(X, n). 

By (3) gn3m ~-w_~qS((y,n,m)). So for each n either 

(8a) Bm> 0 I-w_~(o((y,n,m)) 

o r  

(Sb) }-,,_~(o((y,n,O)). 

(Sa) implies (7a) while (Sb) and (1) imply 

}-,,_~Vm > 0-1 (o((y,n,m)) 

which implies (7b). Thus for each n (7a) er (7b) holds, so that we may use the 

w -  d rule to infer from (7) 
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Fw_~,3vVnVX [q,(X, Kn))] 

which, as z = 1, implies 

(6a) Fw_~(X)  ~ [z = l&3vVn3rn > O(y,~(n),m) e X]. 

Thus we have shown that ( 3 ) *  (5), (4a):~ (6a) and (4b):> (6b). From these 

implications we may infer (2), proving the lemma. 

The following consequence of Lemmas 5.1 and 5.2. may be proved along the 

lines of the proof of Theorem 2. 

THEOREM 4. If A ~_ co then 

(a) A is semi-recursive in E 1 iff A is weakly w -  d representable 

(b) A is recursive in E 1 iff A is strongly w -  d representable. 

§6. Generalisatians. In this section we shall give definitions and state results 

generalising the results of the previous sections. 

By a quantifier we shall here mean a family ~ _ P(co). Given such a family 

we may extend the language of second order arithmetic to allow formulae of the 

form ~xdp(x). The interpretation in the standard model is extended to the larger 

class of formulae so that ~xdp(x) is true iff {n e co] ~(n) is true} e ~ .  The dual 

quantifier to ~" is ~ o =  {co_ A/A ¢ ~,~'}. We shall use ~ ' ° x  q~(x) to abreviate 

-1~x-1 ~(x). The class of ~- formulae  is the class of formulae containing those 

of the form (a = ~), "-1 (o-, = z0, a e X built up using v ,  &, 3x, Vx, ~'x, ~ °x ,  where 

o',~t are representing terms. The ~-inductive definitions are those definable by 

~'-formulae. Below we shall always assume that ~" is positive, i.e. A _ B e ~" 

implies A e ~'. Then ~ o  is also positive and the ~-inductive definitions are 

monotone. Ind(~)  is defined as in §1 where ~ is here used to denote the class of 

,~-inductive definitions. 

We now define a theory (As) obtained from the theory of second order arith- 

metic by extending the schemas to apply to all formulae in the extended language 

and adding the following axiom scheme and infinitary rules of inference. 

vxD( ) 44x)] -,  

The co-rule 

The ~'-rule 

The ~r°-rule. 

where a set T of formulae is closed under the ~'-rule if 

(*) {n e co [ ~p(n) e T} e ,~  ~ ,~xdp(x) e T. 
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for all formulae ¢(x). The ~°-rule  is obtained by replacing ~ in the above by ~ o .  

The theorems of the above system (As) will be called the ~,~-theorems and I-v~b 

will denote that q5 is an ~-theorem. Note that every sentence that is an .~'-theorem 

is true. 

The ~-rule  may be weakened to the w - ~ "  rule, where T is closed under the 

w - ~ rule if (*) holds whenever 

Vn['qS(n) e T or 7 ¢ ( n )  e T]. 

Similarly for the w -  ~ o  rule. The theory (Aw_~) is obtained as is the theory 

(As) except that the w - ~ and the w - ~-o rules are used rather than the ~" 

and ~-0 rules. 

Given ~" we may define two functionals F j  and F~ # where F~ is the restriction 

of F~ to total functions and 

0 if { x ] f ( x ) =  O}e~ ° 

F ~ ( f ) - ~  1 if { x ] / ( x ) > 0 } e ~ "  

and is undefined otherwise. 

In the following we shall assume that E is partial recursive in both F j  and 

F~ so that §2 Propositions C and D apply to both Fs~ and Fff. 

THEOREM 5. 

(a) The following are equivalent for A c co: 

(1) A e lnd(~-) 

(2) A is weakly J'-representable 

(3) A is semi-recursive in F~. 

(b) The following are equivalent 

(1) A is strongly ~-representable. 

(2) A and co - A are weakly ~'-representable. 

(3) A is recursive in F:~. 

THEOREM 6. 

(a) A is weakly w - ~ representable iff A is semi-recursive in Fat. 

(b) A is strongly w - ~ representable if A is recursive in F~. 

The proofs of these results involve no new ideas other than those exhibited in 

previous sections. Note that Theorems 5 and 6 remain true when the axioms of 

(As) or (Aw_.~) are extended by adding a recursive set of true sentences. The 
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previous  sections give proofs  of  the special  case when ~-  = d = (A _ co ] ~ V n ~ ( n )  

A} and [~¢x~b(x)~3vVn~(~(n) ) ]  is added  as an ax iom for each fo rmu la  ~(x) .  

A n  app l ica t ion  to  a more  famil iar  case is when ~-  = (co), and  the only  inf ini tary 

rule is the co-rule, when F ~  is jus t  E. 
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